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Abstract. Applied pattern recognition for microscopy images is a re-
quirement for the automatization of image classification in a high content
process. This paper describes methods and a system which classifies digi-
tal high resolution tissue slides. These methods cover the schedule line of
global tissue regions and fine granular local tissue classification, down to
the segmentation and classification of single cells. A system called Orbit,
which implements these methods by making use of grid computing, is
explained in detail and applied to a real world data set of lung tissue
slides to quantify the degree of pulmonary fibrosis. A combined model
which takes tissue classification, region discrimination, and mast cells
into account results in a correlation coefficient of 0.81 relative to real
fibrosis scores defined by a pathologist.

Keywords: machine learning, pattern recognition, tissue classification,
cell quantification, grid computing, idiopathic pulmonary fibrosis

1 Introduction

Idiopathic pulmonary fibrosis (IPF) is a fatal life-threatening disease which in-
volves the thickening and scarring of the lungs, typically from an unknown cause,
which makes it hard for oxygen to enter the blood. Currently no specific treat-
ments have yet been approved for this disease. It is known that fibrotic lungs
have additional collagen in normal lung tissue and Hunt et al. reported an in-
crease of mast cells [8]. In the context of biological studies it is necessary to
determine the degree of fibrosis to quantify the effect of a disease model or drug.
This can be done manually by pathologists looking through a microscope and
analyzing the stained tissue structure. A digital tissue slide can be produced by
staining the collagen in lung tissue and scanning an image with a digital mi-
croscope in a highly automated process. These digital tissue slides, captured at
20x magnification, are very high resolution images, typically around 100,000 x
60,000 pixels with three color channels. Since this procedure from the staining to
image acquisition, is highly automated, up to 80 digital slides can be produced
within a day. However, manual analysis of these slides slows down the whole
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process. Therefore, we describe a system called Orbit that can store images cen-
trally, distribute them among several clients, and perform image analysis on an
in-house grid computing environment consisting of 300 nodes.

This paper is organized as follows: In Section 2, we describe the similarities
and differences between related work and our system. In Section 3, the Orbit
system and its underlying algorithms are described. The results of the IPF case
study are presented in Section 4. We conclude with a discussion and thoughts
on future research in Section 5.

2 Related Work

Automated image analysis as part of the content-based image retrieval (CBIR)
process has been studied in several papers during the last decade [5]. In the last
years, supervised learning in image analysis has become very important. In gen-
eral, there are two main clusters: The first set of systems classifies image regions,
for example, tissue classification. Susomboon et al. [17] studied pixel-based clas-
sification and applied it to CT images. The well-studied Haralick texture features
[7] are used in many applications to generate features based on a set of spatial-
dependence probability-distribution matrices. These features are very meaning-
ful when the context size is large compared to the number of (gray) color shades.
We are interested in local features and therefore use small regions around pixels.
We use similar features as Haralick, but, instead of using the relative frequency
distribution, we apply the statistics to the local region data directly (Section
3). Caicedo and Izquierdo studied several low-level features in tissue images and
concluded that similarly distributed tissue features result in a boost of accuracy
where a combination of fundamentally different image descriptors can lead to a
performance decrease [3].

The second cluster identifies objects, for example cells, and classifies them
[4, 9, 13, 10]. This method is also applied in the context of high content screening
[15]. Snijder et al. report that the cell population context is important for the cell-
to-cell variability in endocytosis and virus infection [16]. This very interesting
outcome underlines the importance of extracting features on different levels.
Applications which analyze and track cells in videos instead of single images
also exist [1].

In contrast to these two clusters, our system has to struggle with both tissue
and cell classification to determine both the degree of fibrosis, the quantification
of a tissue class (Section 3.1), and the cell count of a particular cell type (Section
3.2) but each in specific tissue regions (Section 3.1). Orbit has been successfully
applied to the identification of Cathepsin L as a potential sex-specific biomarker
for renal damage [2]. The architecture and value to the drug discovery process
of our in-house grid used by Orbit is discussed in [11].
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3 Methods

The Orbit system processes images with three modules: The first module per-
forms a pixel-based tissue classification which can be applied for fine granular
local structure classification or, in a larger context, region discrimination (Sec-
tion 3.1). The second module does an object segmentation which is usually used
for cell segmentation. The combination of these modules allows a very convenient
segmentation procedure without explicitly specifying a foreground/background-
threshold (Section 3.2). A third module which can be used for cell classification
classifies segmented objects (Section 3.3).

3.1 Tissue Classification

Tissue classification is performed with supervised machine learning methods. In a
first step, the user visually marks representative regions of tissue classes C. This
can be, for instance, normal lung tissue, fibrotic lung tissue, and background.
The marking is done by drawing shapes onto one or several images which works
the same way as a brush tool in typical painting applications. For each class
c ∈ C, several shapes s ∈ Sc exist which are possibly distributed among several
images. The set of pixels Ptrain within the shapes labeled with the associated
tissue class defines the training set, formal

Ptrain = {pt ∈
⋃
c∈C

Sc} (1)

Where p ∈ s means pixel p is located in shape s. In the next step, a set of fea-
tures is computed for each pixel. Therefore a window-size w is defined, usually
between 3 and 20. All features are computed for a given (middle) pixel and the
window-size which defines the local context around the pixel ((w/2) − 1 pixel
left, right, up and down). We use a combination of the following six features:
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|W |

∑
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√

1
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√
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∑
p′∈W

(p′ − p)2

Where W is the set of pixels inside the window region.

These features are computed separately for each color channel. The images
in the pulmonary fibrosis case study consist of three color channels (RGB) which
lead to 18 numerical features per pixel. A support vector machine (SVM) is used
to build the model based on the features of the training set Ptrain and to perform
the pixel-based classification of the whole image. This procedure leads to the
assignment of a tissue class to each pixel of the image: ∀p∈P p← c ∈ C. Figure
1 shows a lung tissue cut at 20x magnification and the computed classification
displayed as an overlay.
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Fig. 1. Extract of a lung tissue cut at 20x magnification (left). The collagen is stained
blue. The right image displays the pixel-wise classification where the collagen tissue
class is colored green.

Region Discrimination For pulmonary fibrosis, quantification it is not suffi-
cient to quantify all the collagen in the lung because the majority of the collagen
present is so-called structural collagen found around vessels. This kind of col-
lagen is unrelated to pulmonary fibrosis-disease and is absolutely necessary for
stabilizing the air and blood vessel borders. Unfortunately, this collagen is the
same structure and color as the collagen generated by the fibrosis. Biological ex-
periments have shown that it is not possible to discriminate between structural
and non-structural collagen in the staining procedure.

Our first approach was to consider the vessels as objects and to apply a shape
detection algorithm which finds ’holes’ in the lungs and excludes these ’holes’
and their border from further analysis. Unfortunately the results have been poor
due to the high variability of vessel shape. Much better results were achieved
by considering the vessel borders as a special tissue while looking at the lung
at a 5x magnification. As mentioned, on a high resolution image, the different
type of collagen could not be distinguished by structure and color. However, in a
low resolution image combined with a big window-size (w = 25), the supervised
tissue classification procedure can detect the presence of collagen with a hard
edge defined by the vessel border. In addition to the vessel borders, global tissue
regions such as larger dense fibrotic regions, could be determined as well. Figure
2 shows a low resolution scan of a lung cut and the according discrimination
regions classified by a SVM. The model has been trained on training regions of
three other lung cuts.

This approach enables supervised region discrimination on low resolution
images by applying tissue classification for high resolution images only to specific
regions of the low resolution classification. This allows to mask the lung slide
and to perform the collagen tissue quantification while excluding the structural
collagen around vessels. An interesting fact is that tissue classification can be
performed at multiple resolution levels which leads either to local features on high
resolution images or region discrimination on low resolution scans. In addition
to region masking as a pre-processing step for tissue classification, the region
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Fig. 2. Low resolution lung tissue slide (left) and the region discrimination (right).
Blue marks vessel borders, green normal lung tissue and yellow fibrotic lung regions.

discrimination information itself can be used as a feature in a prediction model
because it adds information about the region ratio (Section 4.1).

3.2 Object Segmentation

Object segmentation in the case of the pulmonary fibrosis example means cell
segmentation. In general, an object is a set of coherent pixels of the same tissue
class c. Normally, object segmentation requires a binary image with foreground
and background which is achieved be defining a threshold that distinguishes
between these two classes. Here we generalize and use one specific tissue class cf
as foreground and the union of all other classes as background: cb = ∪i6=fci. This
allows us to use the supervised tissue classification procedure which produces a
much more precise foreground definition compared to a simple threshold setting.

Shape detection is a three-step procedure: Applying the ’right hand’ rule,
refining the region, and executing the watershed algorithm to segment connected
regions, for example overlapping cells. The ’right hand’ rule scans the image
pixel by pixel (from top left to bottom right) and checks if the current pixel
is a foreground pixel, px,y ∈ cf . If so, a new polygon shape object is created.
Then neighbouring pixels are checked in clockwise order (top-right, right, . . . ,
top) and, if they are of the same tissue class as the start pixel, the position is
added to the polygon. All pixels added to the polygon are marked as used so
that they will not be part of another polygon. The result of this algorithm is a
set of polygons which define objects of the same specific tissue class, for example
cells.
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One of the problems we noticed is that when only applying the ’right hand’
rule, objects often either have holes inside or are too narrow. To eliminate these
drawbacks, we apply a region refinement step that performs a dilate step nd
times followed by ne erode steps. A typical setting for nd and ne is three.

A frequent application of object segmentation is cell segmentation. Unfortu-
nately, cells are often not well separated, but instead overlap each other. The
so-called watershed algorithm [14] is often used to segment overlapping cells [12]
and is the third step in our segmentation process. Basically this algorithm com-
putes an inverse distance map from object to background. This map has low
values in the middle of objects, the valleys, and high values at the border, the
mountains. Now the valleys are successively flooded with water until the water
reaches a height allowing two valleys to merge. A virtual dam is build there,
which defines the segmentation of objects. Overlapping convex shapes are well
separated with this procedure.

For cell segmentation, we obtained the best results by concatenating these
three steps. However, applying the shape refinement step, the watershed algo-
rithm or a combination of them is optional. Section 3.3 describes how object
classification can be used to improve the accuracy of object segmentation for a
specific cell type.

3.3 Object Classification

We previously described object segmentation. The result is a list of shapes, in
particular polygons. For cells, these polygons describe circles more or less. How-
ever, there are several phenotypes expressed in different shape contours and ar-
bitrary shape textures. Once more, we use supervised machine learning methods
to classify these objects.

The extracted features are based on the shape and texture of the object
shapes. The combination of shape descriptors and texture descriptors makes it
possible to differentiate between several cell phenotypes and between correct and
incorrect cell segmentations, for example residues. The texture descriptors are
the same as for the tissue classification, which are described in Section 3.1. In
addition we compute six shape descriptors for a shape s as follows:
bbAreas = bb(s)width ∗ bb(s)height
ratios = max(bb(s)width, bb(s)height)/min(bb(s)width, bb(s)height)

areas = 1
2

|s|−1∑
i=0

sixsi+1y − si+1xsiy

perimeters =
|s|∑
i=1

∆(si, si−1)

circularitys = areas/perimeter
2
s

roundnesss = 1
|s|

|s|∑
i=0

|∆(si, centroids)− ∆̄(s,centroids)|

Where si is the i-th point of the polygon s, bb(s) is the bounding box of the shape
s, ∆ is the euclidean distance function, and ∆̄(s,centroids) is the mean distance
from each point in s to the centroid of s.
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After object segmentation, the user has the possibility of defining a set of
object classes. A training set is built by visually selecting a class label and clicking
on a set of objects, e.g. cells, according to the selected class. In our tests, it was
sufficient to mark about ten objects per class. A SVM gets the object features as
input and is used to build a model based on the train set. Afterwards all other
objects can be classified using this model. For cell classification the class set
normally defines the cell phenotypes. However, we noticed that it is a good idea
to add an additional ’residues’ class. Some segmented objects that are incorrect,
e.g. dust particles or objects that look wired due to segmentation errors, can be
assigned to that particular class. The system is then able to classify error objects
and one can exclude them from further analysis.

The object classification model has been built particularly with regard to the
classification of arbitrary cell phenotypes for high content screening scenarios. In
the fibrosis quantification case it is used to improve the counting of mast cells.
Giemsa staining colors the mast cells a dark violet color. Object segmentation is
used to segment the mast cells and count them. However, some other tissue parts
have been segmented as ’mast cells’ as well because the segmentation algorithm
only takes the texture into account, and not the shape of a specific object. How-
ever, the object classification applied afterwards, is able to distinguish between
real mast cells and residues based on the shape descriptors. This concatenated
procedure is used for the mast cell count described in Section 4.1.

3.4 Implementation

Orbit is an in-house developed image analysis and management system. It con-
sists of three main components: Image acquisition, image server, and image ana-
lysis. The main focus is on the ability to handle very large images, especially
images which do not fit completely into the system memory. Further design goals
are standardization and centralization. The entire system is written in Java, en-
abling platform independence. The in-house grid allows the parallel execution of
grid tasks distributed on around 300 workstations. Figure 3 shows a screenshot
of the Orbit Image Analysis module.

Image Acquisition Small client programs called agents are responsible for
reading images files from a local computer or a machine. All images are converted
into a standard sRGB color space in the case of color images or grey-color images.
The tile-based TIFF container is used with JPEG as the compression format.
Experiments have shown that with a JPEG compression factor of 0.85 there is no
drawback for image analysis compared to uncompressed raw data, but it has the
advantage that the images take only about one-ninth of the disk-space. All the
meta data of the image as well as additional meta data from the machines, for
example the microscope magnification, is read out and stored in the central meta
data database of the image server. The image data itself is transferred to the
image server via Java RMI in several blocks. The idea is that specific readers for
arbitrary imaging systems, such as microscopes or high content image readers,
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Fig. 3. The Orbit Image Analysis application showing a lung tissue (middle), search
bar (left), overview image (right top), meta data (right middle) and a magnifier (right
bottom). In the toolbar tissue classes can be selected and marked on the image by
making use of drawing tools. With the train and classify button (right top) a statistical
model can be trained and applied.

which handle specific image and meta data formats, exist. The output of the
agents is always the same format regarding image container, compression, color-
space, tile size and alignment, and meta data. For our pulmonary fibrosis case
study, the tissue slides are scanned at 20x magnification with a digital microscope
that can scan eight slides at a time. About 48 GB of compressed image data were
produced for the 61 slides of the case study (Section 4.2).

Image Server The centralized image server plays an important role in the
system: It holds all the image data on an iSCSI attached file server, handles
search requests, and delivers image data to the clients. Large images are delivered
in several tile pieces to the clients. The transfer of the image data to the clients is
implemented as a servlet to maximize the stability, even with hundreds of (grid)
clients accessing image data in parallel.

Image Analysis The image analysis module retrieves image data from the
image server and applies the supervised pattern recognition methods described
in Section 3. It can be executed as a stand-alone application or in grid mode.
In the latter case, several image analysis clients act as grid clients and work in
parallel on the grid. Java Advanced Imaging (JAI) is used for image manipulation
operations and Weka [6] is used as a machine learning library. To handle very
big images, a custom image implementation is used that fetches it tile by tile
from the image server and discards tile data when it is no longer used. With this
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approach, all mentioned image analysis algorithms scale very well even on high
resolution images.

With grid computing, the computational power can easily be distributed.
However, the bottleneck is the distribution of the image data from the centralized
image server to all the parallel working grid clients. To avoid too much network
traffic at any given point in time, the clients never load an entire image at once.
Instead, a tile (or several tiles if needed) is loaded and processed. The next tile is
loaded after the partial result of the last tile is ready. This procedure distributes
the network traffic over the whole analysis process which smooths the network
load enormous.

The images on the image server are compressed. However, if the image server
reads a specific tile out of the image, it has to decompress the tile data. The server
can now either deliver the uncompressed tile data directly to the clients or it
can compress the data again. Both procedures have drawbacks: The first option
causes a lot of network traffic and the latter requires a lot of computational power
on the server side. We tried out both methods with 300 grid clients working in
parallel and noticed that we run into network problems when sending the tile
data uncompressed, whereas compressing the data on the server side worked well
on a state of the art eight core server. Thus, image data is always compressed
before sending it over the network.

4 Results

For the pulmonary fibrosis case study, 61 lung tissue slides are stained with
Trichrome staining coloring the collagen blue, and a further 61 slides from the
same animals are stained with Giemsa staining to color the mast cells. The lung
cuts stem from male Sprague Dawley rats of either a bleomycin treated group or
a control group. The bleomycin is used to induce fibrosis and is dispensed from
three days up to eight weeks. All slides are scanned with a digital microscope
at 20x magnification. We make use of the pathology fibrosis rating to build a
prediction model which is based on our predictions of region discrimination,
tissue classification, and the cell count of a specific type of cells. This allows
the prediction of a fibrosis degree score which we use to quantify the differences
between the bleomycin group compared to the vehicle group over several weeks.

The analysis of one tissue slide takes about five hours on a standard 3GHz
dual-core PC. This long runtime is due to the very large image dimensions and
the fact that every single pixel is classified. To analyze all 61 tissue slides, the
computation time is around 300 hours. By distributing the tasks in the grid some
overhead is produced, for example, the image data has to be transferred over
the network to each client. We experimented with different tile-per-job numbers
and figured out that at 35 jobs per image, which is 2135 jobs in total, all images
are analyzed within about three hours on the grid with around 300 clients. This
means that an analysis on a single grid node takes about three times as long
as the analysis on a standalone machine, but, the overall rate is increased by a
factor of 100 which makes this type of application feasible.
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4.1 Pathologist Rating Model

A pathologist rated all slides manually with a discrete fibrosis stage from zero
(no fibrosis) to four (heavy fibrosis). These values are considered the real fibrosis
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Fig. 4. Pathologist rating vs. prediction. Correlation coefficient = 0.81.

scores. We use statistical models to predict the region discrimination, the tissue
classification, and the number of mast cells as described in Section 3. Cell clas-
sification is used to improve the mast cell count by classifying each segmented
mast cell as a real mast cell or a residue. With this method, some wrong seg-
mented tissue with the same staining color as the mast cells could be detected as
false positive and excluded from the mast cell count. All measured dimensions
add to the degree of fibrosis, but it is unclear how much each component con-
tributes. Therefore a linear model is built that makes use of all predictions as
input, and outputs the pathologist scores. This function is called the combined
model. Figure 4 shows the predictions of the combined model versus the real
pathologist scores.

This combined model is evaluated with a 10-fold cross-validation. The eval-
uation shows a correlation coefficient of 0.79 and a mean error of 0.60. This is
a good result due to the fact that the pathologist values are discrete values and
the prediction model computes continuous values. Therefore, a mean error of 0.5
would be optimal. The correlation coefficient of the complete data is 0.81, which
is slightly better than the cross-validation coefficient. Table 1 shows the evalu-
ation for the single and combined models. It clearly shows that the combined
model outperforms the single models and therefore all dimensions are needed to
achieve a good fibrosis prediction model.
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Table 1. 10-fold cross-validation results for predicting fibrosis scores.

Model Correlation Coefficient Mean Absolute Error

Tissue Classification 0.35 1.08
Region Discrimination 0.67 0.76
Mast Cell Count 0.37 1.05
Combined Model 0.79 0.60

4.2 Time Course Study

The combined model predicts fibrosis stages from zero to four which reflects
the pathologist scores (Section 4.1). With these predictions, the treated versus
vehicle tissues can be compared over time. Figure 5 shows the box plots for
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Fig. 5. Treatment vs. vehicle for different treatment weeks.

each week and the according p-values from a one-sided Welch two sample t-
test. It clearly shows a significant increase (p < 0.01) of fibrosis in the treated
compared to the vehicle group. The fibrosis evolves until week four and then
decreases. For the vehicle group, the fibrosis increases with each week which
can be explained with a correlation between age/weight and fibrosis. Figure 6
shows the mean values per week for each group over time which emphasizes the
increase in fibrosis until week four which is followed by a decrease.
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Fig. 6. Treatment vs. Vehicle mean values over time. The fibrosis evolves until week
four and then decreases.

5 Conclusion and Future Work

In this paper, a system for automated image analysis using supervised machine
learning methods has been presented. The system is in charge of image acquisi-
tion, image data distribution with a centralized image server, and image analysis
which is performed on the in-house grid. One property of all image analysis al-
gorithms is that they can be applied to the specific tiles of an image rather then
the whole image. This allows the parallel execution of image analysis algorithms
on grid clients that load image data from the centralized image server.

The main focus was on the quantification of idiopathic pulmonary fibrosis in
lung cuts. We introduced the analysis modules tissue classification, region dis-
crimination, object segmentation and object classification. Scored fibrosis stages
from a pathologist have been taken as target values. We figured out that the
combination of tissue classification, region discrimination, and mast cell count is
a good predictor of bleomycin-induced pulmonary fibrosis. It is interesting to see
that none of the single measurements is sufficient to predict a good score, but
only the combination of all dimensions provides good results and outperforms
the single models. The coherence of mast cell count and pulmonary fibrosis sup-
ports the outcome of Hunt et al. [8] which describes an increased number of mast
cells in IPF.

The outcome of the trained model has been used to analyze a time course
study where the bleomycin disease model was evaluated over eight weeks. The
application of bleomycin showed a increase of fibrosis up to week four and a
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decrease afterwards. The increase relative to the vehicle group is statistically
significant for all weeks (p < 0.01).

Cell classification has been applied to distinguish real mast cells from residues,
which improved the mast cell count. However, this method can also be used for
the classification of cell phenotypes in high content screening. This is another
application of Orbit and part of our future work.
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